Modern Age of Rhodium Porphyrins: Review of Prof. Kin Shing Chan

John Thompson Dong Group Literature Seminar September 26th, 2013

- 138 Papers Published
- Over 25 Graduate Students Trained
- Current leader in Rhodium porphyrin chemistry

The Chinese University of Hong Kong

Chan Group Chemistry

- Pre Metalloporphyrin Expansion-

Overview

- K.S. Chan's start with rhodium porphyrins
- Research Focus:

 1,2-Rearrangements
 C-C Activation
 Base Promoted C-H Activation
 Misc.
- Future of his chemistry

Metalloporphyrins

- Review:
 - Rhodium and Iridium coordinate strongly to porphyrins
 - The metals can exist in oxidation states of +1, +2, and +3 with porphyrin coordination
 - Ir^{II}/Rh^{II} = 7 electrons, paramagnetic metalloporphyrins
 - Unsterically hindered, exist as dimers
 - Sterically hindered, exist as stable monomers

Rh

Rich history in Electrophilic Aromatic Substitution and C-H activation of alkanes.

Solving Metalloporphyrin Dimer Formation

• Issue: Synthesis of the reactive Rh^{II}/Ir^{II} dimers is non trivial

• Novel, high-yielding convenient synthesis that works for Ir and Rh

• Stoichiometric in TEMPO, quantitative in yield of dimer

Inorg. Chem. 1994, 33, 3187.

1,2-Alkyl Rearrangement

• Rare occurrence in metals with macrocyclic ligands due to lack of cis-coordination

 <u>Driving Force</u>: Even though more sterically bulky, electronwithdrawing phenyl group stabilizes 2° Rh-C through bond polarization

Mechanism? Cis-coordination is absent with rhodium porphryins, leaving β -H elimination hindered

- 1st order in (por)Rh
- ¹³C label showed Rh migration

1,2-Rearrangement Mecanism

Mechanism: Cis-coordination is absent.

- 1. Radical process
- 2. β-H elimination and M-H insertion

Ph

Rh

Erying plot studied over temperature ranges showed organized transition state

Radical involvement unlikely

JACS 1998, 20, 9686.

1,2-Rearrangement Mecanism

Electronic Effects of Rearrang

Published on 01 January 1999. Downloaded on 13/08/

• New study with planar porphyrins

- Planar porphyrins required higher temperature (Xray shows rhodium in plane of porphyrin)
- Electronic Effect: EWG: favors rearrangement EDG: favors starting material
 - ***Promotes stabilization of carbocation

J. Chem. Soc., Dalton Trans., 1999, 3333.

J. Chem. Soc., Dalton Trans., 2011, 510.

TEMPO: Reagent, not Radical Trap

- During investigation of 1,2-rearangment of alkyl rhodium porphyrins, TEMPO underwent CCA.
 - Reactivity was depended on β-C-H bond strength

- [TEMPO] increase → increase in reaction rate
- Alkyl porphyrins, like propyl or ethyl, required 7 and 14 days respectively

- Rhodium-Carbon bond was cleaved in reaction

Organometallics, 2002, 21, 2362.

TEMPO: Reagent, not Radical Trap

- Mechanism occurs in 2 steps:
 - A) Generation of Rh^{II}
 - B) CCA of TEMPO

Mech. A:

- Requires homolysis of strong Rh-C bond
- Absence of trapped product

Ph 、

Mech. B:

- Supported by RhoH intermediate
- Disappearance of starting material was directly related to [TEMPO]
- Without TEMPO, 1,2-rearrangement took 10 to 144 h, no Rh-H intermediate

Mech. C:

- Synchronous H-abstraction with homolysis of Rh-C bond.
- Explains trend in TEMPO concentration

CCA Mechanism is still unexplored

Organometallics, 2002, 21, 2362.

TEMPO C-C Activation Mechanism

• Competes with CHA at lower temperatures

Isolated in Previous Work

Table 1. Yields of Rh(tmp)Me and TEMPOH

entry	temp °C	TEMPO equiv	% Rh(tmp)Me	% TEMPOH	% total yield	Rh(tmp)Me: TEMPOH
1	70	1	60	5.7	65.7	10.5:1
2	70	2	76	8.0	83.0	9.5:1
3	70	5	80	9.0	89.0	8.9:1
4	70	20	82	9.3	91.3	8.8:1
5	50	20	73	16.8	89.8	4.4:1
6	60	20	76	12.3	88.3	6.1:1
7	80	20	85	3.9	88.9	21.8:1

>96%

• TEMPO-H believed to come from a Rh-H intermediate

JACS, 2008, 130, 2051.

TEMPO-H Hydrogen Source

- If Rh-H is indeed the intermediate, then where did "H" atom originate?
 - Solvent (Benzene)
 - TEMPO
 - Starting Material [(TMP)Rh^{II}]
 - Product [(TMP)Rh^{III}-Me]

Extremely difficult Stable in benzene at 70°C for 24h Stable in benzene at 130°C for 2d No reaction at 70°C

• Formed from chelation assisted CHA

- » Driven by fast TEMPO H-atom abstraction
- » TEMPO-H yields do increase with higher [TEMPO]
- » Binding studies showed a 1:1 adduct
- » Secondary H's unlikely due to unstable products

JACS, 2008, 130, 2051.

DFT Analysis of CCA

• Propose methyl transfer occurs through radical or S_N^2 -like transition states.

(open-shell singlet)

TS1

- Radical pathway more exergonic by 5 kcal/mol
 - Both are plausible

JACS, 2008, 130, 2051.

Activation of Ketones

- Activation of C_{CO} - C_{alkyl} has been established, while $C_{\alpha-CO}$ - C_{alkyl} was unexplored

-only CHA product due to enolizable protons

J. Organomet. Chem., 2006, 691, 3782.

Activation of Non-Enolizable Ketones

CCA results betw	ween Rh(tmp) and ketones				
Entry	Ketone ^a	Ligand	Time (d)	Product (Yield [%] ^d)	
1 2 3	3d	None Ph ₃ P ^b py ^c	1	Rh(tmp)CH ₃ 1 (20) Rh(tmp)CH ₃ 1 (31) Rh(tmp)CH ₃ 1 (22)	PPh ₃ = More e⁻ rich/ reactive (por)Rh [∥]
4	→ ³ e	$\mathrm{Ph}_{3}\mathrm{P}^{\mathrm{b}}$	3	Rh(tmp)CH ₃ 1(trace)	Pyridine= induces
5	Ph 3f	Ph_3P^b	1	Rh(tmp)CH ₃ 1 (18, 16 ^e)	aloproportionation
6	Ph 3g [26]	Ph_3P^b	1	Rh(tmp)CH ₃ 1 (24)	
7	Ph Ph 3h [27]	Ph_3P^b	1	Rh(tmp)CH ₃ 1 (14)	Rh(tmp) + end
8	Ph Ph 3i [28]	Ph ₃ P ^b	3	No reaction	
9	O 3j [29]	Ph_3P^b	1	Rh(tmp)CH ₃ 1 (25)	ļ
10	3k [30]	Ph_3P^b	1	Rh(tmp)CH ₃ 1 (30)	(pmt)Rh
11	O Bn 31 [30] O	Ph_3P^b	3	Rh(tmp)Bn 10 (6)	Cyclic ketones unreactive

 $(TMP)Rh^{II} \xrightarrow{py} py(TMP)Rh^{III} + py(TMP)Rh^{I}$

J. Organomet. Chem., 2006, 691, 3782.

Aliphatic Carbon-Carbon Bond Activation

- Reactions for the $C_{\alpha-CO}$ - C_{alkyl} activation were low yielding with strict substrate compatibility
- Other applications:

J. Organomet. Chem. 2007, 692, 2021.

Organometallics 2007, 26, 2679.

Organometallics 2009, 28, 6845.

C-C Ring Opening of Cyclooctane

- Cyclooctane is relatively unstrained, common target for C-H activation.
- C-C activation is rare; heterogeneous conditions requiring 530°C or oxidative conditions with Co (II)/Mn(II)/N-hydroxyphthalides yielding the diacid in 2% yield.

- Both (TPP)Rh-H and [(TPP)Rh]₂ gave low yields
 - Only minor intermediates by themselves

JACS 2010, 132, 6920.

C-C Ring Opening of Cyclooctane

CCA catalyzed by [Rh^{ll}]

$$2[Rh] - H \xrightarrow{i} [Rh]_2 + H_2$$
(8)

$$[Rh]_2 \xrightarrow{ii} 2[Rh]$$
(9)

Table 1. Rh^{II}(ttp)-Catalyzed CCA of c-Octane wih Rh(ttp)H

Rh(ttp)H + I 3	Rh ₂ (ttp) ₂ + <i>c</i> -octane 5	<u>120 °C</u> 15 h, N ₂	Rh(ttp)(<i>c</i> -octyl) + F 1	Rh(ttp)(<i>n</i> -octyl) (12 2
Entry ^a	3:5	Yield 1 (%)	Yield 2 (%)	Total yield (%)
1^b	1:0	0	21	21
2	2:1	60	18	78
3	5:1	53	26	79
4	10:1	0	73	73

^{*a*} The results are the average of at least duplicate. ^{*b*} 73% Rh(ttp)H recovered.

JACS 2010, 132, 6920.

rung ei ai.

C_{cn}-C_x Bond Cleavage Mechanism

Proposed Mechanism:

C_{co} - C_{α} Bond Cleavage Mechanism

Proposed Mechanism:

C_{co} - C_{α} Bond Cleavage Mechanism

Proposed Mechanism:

C_{co} - C_{α} Bond Cleavage Mechanism

Catalytic C-C σ -Bond Hydrogenation

• Replaces H₂ with H₂O as hydrogen donor in hydrogenation in tandem CCA

• Reaction was 2nd order with (TMP)Rh

٠

- Mechanism of Rh-Me exchange is through σ-bond metathesis
- Deuterium experiments confirmed H₂O was source of hydrogen

JACS, 2012, 134, 11388.

%D terminal:internal = 8:71

Catalytic C-C σ -Bond Hydrogenation

• Replaces H₂ with H₂O as hydrogen donor in hydrogenation in tandem CCA

$$1000 \text{ equiv } H_2O$$

$$Rh^{III}(ttp)Bn \xrightarrow{benzene-d_6} PhCH_3 + Rh^{III}(ttp)H + \frac{Rh \text{ porphyrin}}{unknowns} (5)$$

$$2\% \qquad 3.5 \text{ d} \qquad 66\% \qquad 15\% \qquad 41\%$$

JACS, 2012, 134, 11388.

Switch Gears: C-H Activation

• Before Chan, this field was dominated by Bradford Wayland

Rhll

JACS, 1991, 113, 5305.

Switch Gears: C-H Activation

• Went into C-H Activation field going back to Wayland's work, but found an interesting discovery

- High temperature favored less stable rhodium-alkyl bond
- Coordinating ligands were not effective, only forming complexes with rhodium

		10010 10 200		
10equiv base	entry	base	time/min	yield/%
30min-1hr rxn	1	NaOH	45	94
	2	KOH	60	94
	3	K_2CO_3	30	97
	4	KHCO ₃	600	94
	10equiv base 30min-1hr rxn	10equiv baseentry30min-1hr rxn12334	10equiv baseentrybase30min-1hr rxn1NaOH2KOH3K2CO34KHCO3	10equiv baseentrybasetime/min30min-1hr rxn1NaOH452KOH603 K_2CO_3 304KHCO_3600

Table 2. Base Effect in CHA

C-H Activation of Toluenes

	1 40	ie of Denzy		Ionucines	
		entry A (K ₂ CO ₃)		entry B (no K ₂ CO ₃)	
entry	FG	time/min	product (yield/%)	time/days	product (yield/%)
1	OMe	30	2a (92)	2	2a (78)
2	^t Bu	45	2b (98)	2	2b (84)
3	Me	45	2c (90)		
4	3,5-Me ₂	45	2d (45)	3	2d (35)
5	Н	30	2 (97)	3	2 (26)
6	F	240	2e (64)	3	2e (72)
7	CN	60	2f (83)	3	no reacn
8	NO_2	30	2 g (98)	1	no pdt

Table 3.	Benzylic	CHA of	Toluenes
	•/		

Organometallics, 2007, 26, 1117.

C-H Activation of Alkanes

Rh(ttp)Cl + 1a		10 equiv base 120ºC, time, N ₂	th(ttp)	(2)
entry	base	time (h)	yield (%)	
1	none	24	31	
2	PPh ₃	24	0^a	
3	2,2'-bpy ^b	48	50	
4	2,6-dbpy ^c	24	50	
5	2,6-dppy ^d	24	58	
6	2,6-dppy ^d	6	23	
7	NaOH	6	47	
8	NaOAc	6	51	
9	K_2CO_3	6	59	
10	K_2CO_3	24	40	
^{<i>a</i>} Rh(ttp)Cl(PPh 2,2'-bipyridine.	3) (2f) was 2,6-dbpy =	obtained in 83 2,6-di- <i>tert</i> -butyl	9% yield. ${}^{b}2,2'$ -bpy pyridine. ${}^{d}2,6$ -dppy	=

Table 2. Base Effect in CHA

Table 5. Activation of Alkanes with Rh(ttp)Cl

	Rh(ttp)Cl + R−H 1a	$\frac{10 \text{ equiv } K_2CO_3}{120^{\circ}C, N_2}$ dark, time	Rh(ttp)—R 2a-e	(5)
entry	substrate	time (h)	product (yield (%))
1	cyclopentane	6	2b (76)	
2	cyclohexane	6	2a (59)	
3	<i>n</i> -pentane	24	2c (29)	
4	<i>n</i> -hexane	24	2d (40)	
5	<i>n</i> -heptane	24	2e (58)	

Inorganic bases promoted both yields and rates of reaction (at 10 equiv)

More electron deficient porphyrins reacted faster ٠

2,6-diphenylpyridine.

٠

Linear alkanes required longer time but yields increased for longer chains due to solubility •

C-H Activation of Alkanes

• What happens to the rhodium alkyls over time with base to cause lower yields?

- E2 elimination of (TTP)Rh (Rh-H is moderately strong acid, pka~11)
- C-H activation at allylic position occurs \rightarrow E2 again \rightarrow polymer or forms cyclopentadienyl anion

• Cyclohexyl was more stable due to smaller dihedral angle, disfavoring E2 elimination

Organometallics, 2008, 27, 4625.

C-H Activation Mechanism

Organometallics, 2008, 27, 4625.

Role of -OH: The Reductant

• In these base catalyzed reactions, the role of hydroxide has only hypothetically been examined

Rh^{III}(por)X
$$\xrightarrow{\text{KOH}}$$
 Rh^{III}(por)OH $\xrightarrow{\Delta, C_6D_6}$ Rh^{II}(por) + 1/2H₂O₂
X = CI, I

Rh-OH bond is weak

- Ligand substitution of Rh-Cl to Rh-OH
 - Hydroxide ion is a reducing agent
 - Donates 1 e⁻ to Rh^{III} to make Rh^{II} and hydroxide radical (reported for Mn/Fe/Co porphyrins)

$$\frac{[Rh^{II}(ttp)]_2 + H_2O_{2(aq)}}{2a} \xrightarrow{1 h, r.t} 2Rh^{III}(ttp)OH \xrightarrow{1 h, 120 \circ C} [Rh^{II}(ttp)]_2 + H_2O_2 \xrightarrow{H_2O_2 Trap:} O=PPh_3$$

Organometallics 2011, 30, 2633.

Published: May 02, 2011

Uses of the Base Reduction

This discovery helps explain past results and produce new chemical reactions

Rh^Ⅲ-CI

-CI

 $-H_2O_2$

Rh^Ⅲ-OH

Rh[∥]

"OH"

THANK YOU!

Questions?

1. Predict the product.

2. Propose a mechanism for the reaction below. Provide the rhodium porphyrin product and one of the ether by-products.

(por)Rh-Cl + ∕∕∕0 ∕∕ KOH (10 equiv) rhodium porphyrin + alcohol or H₂O product alkyl formate 25°C, 10min

3. Propose a mechanism and predict the inorganic and organic product.

